Intelligent Waterways Systems

A CG R&D Investment Area

Jay Spalding 860 441-2687 jspalding@rdc.uscg.mil

Intelligent Waterways Systems

- IWS- The collection of systems used to convey waterway related information crucial to MTS
- IWS R&D Objective
 - to build a concept, tools and prototype needed to leverage technology to improve security, safety & mobility of the MTS.

IWS Requirements

- Satisfy a diverse user community
 - Government, commercial, military, recreational (home)
- Multiple departments & agencies directly involved
 - Both consumers and providers of the information
- Handle public, proprietary and sensitive information
- Provide security for users and providers

PRESENT INFORMATION FLOW

INFORMATION USERS

LOCAL NTM

WX BROADCAST

WEEKLY NTM

NOTICE OF ARRIVAL
ATON INFO

MAR EXCH DUE LIST
PORTS INFO

INFORMATION PROVIDERS

Waterways Information Network

- Goal
 - Apply internet technology to solve the problem of distribution of marine navigation and related information.
- Partnering effort with Arizona State University
 - Funded by NSF digital government program
- Project is in formulation stage.

Waterway Information Network – develop protocols, format and means for seamlessly transferring information from providers to users.

Integrated Navigation System

Waterway Information Network

AtoN info

Hydro info

Safety info

SZ

Crew info

Safety info

Hydro info

Weather

Sargo info

SCCS

Waterway Information Network

NOAA PORTS

96 hr notice

Port State C

AtoN info

HYDROGRAPHIC INFO PROVIDER

MARINE EXCHINFO USER

ATON INFO PROVIDER SAFE

MARINE

INFO USER

VESSEL INFO

VESSEL INFO PROVIDER MARINE EXCH INFO PROVIDER

PORT STATE INFO USER

WATERWAYS INFORMATION NETWORK

WX/OCEANO INFO USER

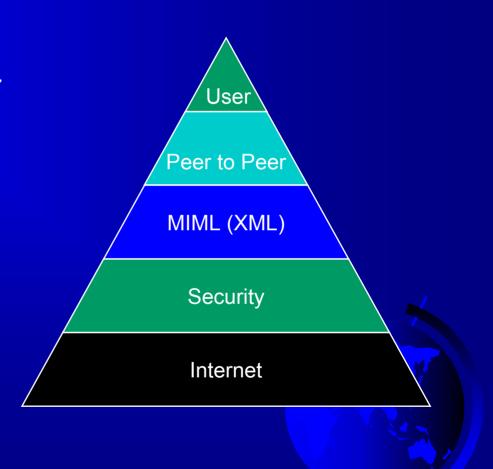
MARINE SAFETY
INFO PROVIDER
HYDROGRAPHIC
INFO USER

WX/OCEANO INFO PROVIDER

INFO USER

GENERAL

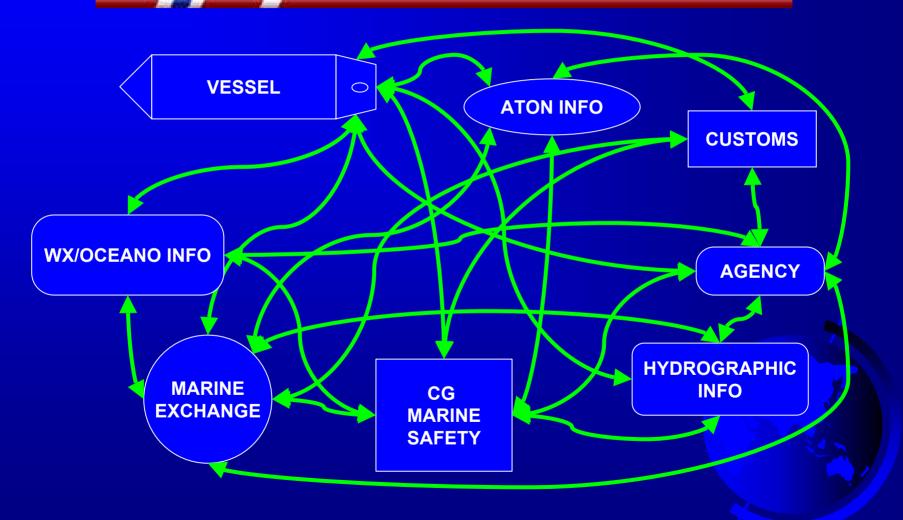
MARINE EXCH INFO PROVIDER ATON INFO USER



Waterways Information Network Concept

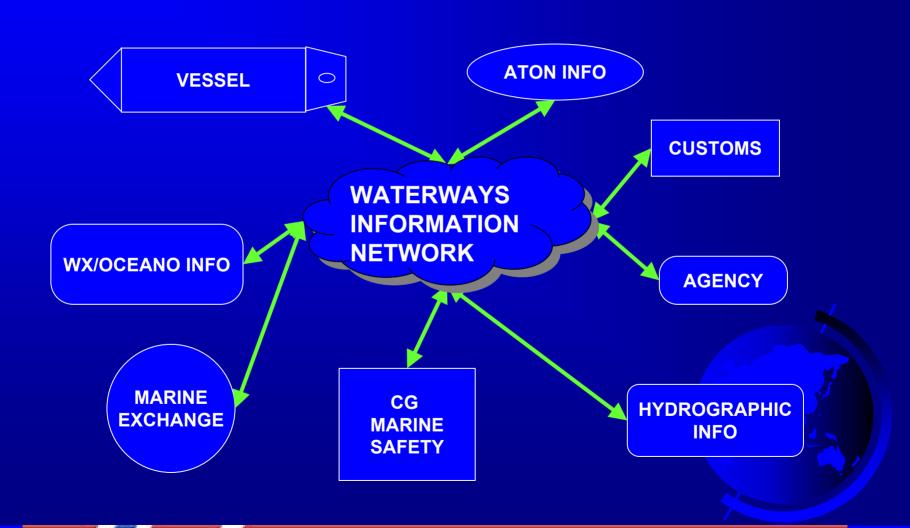
- WIN meets these needs through the use of a peer to peer network structure
- Data is formatted in XML to create the Maritime Information Markup Language (MIML)
- Security is through existing encryption standards.

Why Peer to Peer?



- A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some computers are dedicated to serving the others.
- Supports security & cost recovery
- Allows each individual to control access to the data they provide.

PEER TO PEER NETWORK



PEER TO PEER NETWORK

Arizona State University NSF effort

- Began in 2000
- Goal is to create a computational ontology that can facilitate effective sharing of maritime information.
- Initial data consists of electronic charts from NIMA, and NOAA and text files of the existing Coast Pilot from NOAA.

Computational Ontology

- What is it? A "representation of a conceptualisation". It is a collection of (defined) concepts that exist in a domain and the relationships between them. "Computational" means that it can be processed by software.
- The knowledge we need comes from standards documents; digital chart databases; lexicons and symbology definitions; and other `canonical' documents.
- Concepts and relationships are obtained by semi-automated scraping from various sources or by hand entry if the source is not sufficiently structured.

Computational Ontology

- Why do we need it? To allow software to 'understand' the relationships between things, for example, that a 'silo' is (for boaters) a 'landmark'.
- Reuse of other ontologies was explored early on, but it turned out that not much could be re-used, largely because the word senses were `wrong' for our domain. For example, a bridge is a passageway for cars...but a potential obstruction for boats.

Putting it all together

- Standards + chart database + lexicons + symbology definitions + sample documents ---> ontology
- Ontology (class and attribute names) ---> MIML tags
- MIML + {data retrieval, C P, weather information, etc.} ---> smarter applications, better information processing and sharing

Prototype

- ASU built a prototype application that accepts questions and provides answers in the form of information retrieved from several sources. It demonstrates the use of the taxonomy to provide a unified interface for retrieval of all types of information.
- It retrieves information from (1) the Coast Pilot; (2) a feature database generated from digital nautical charts; (3) web sites. It also generates some information (tide predictions) on an as-needed basis.
- Provide your email address and we will provide you with directions for accessing the prototype system on the web

MIML

Customized XML schema

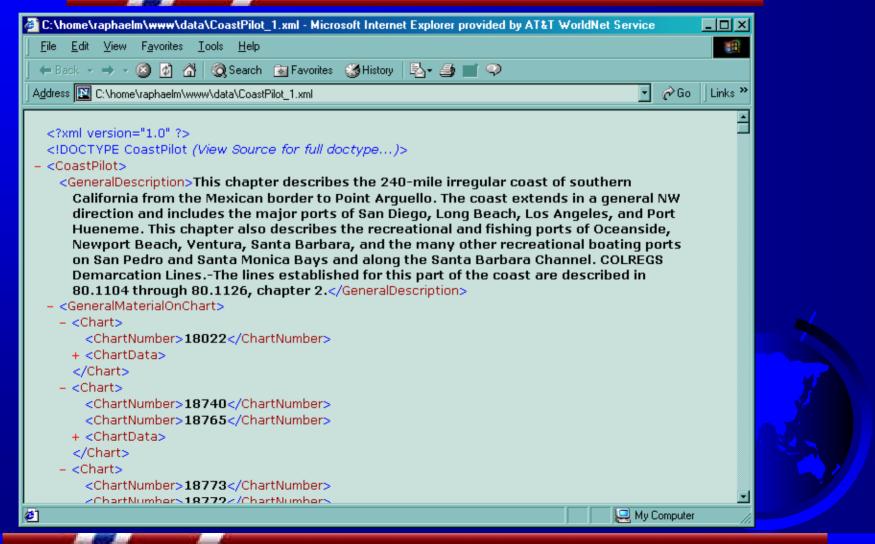
- Supports interagency and public data exchange
- Information categorization
- Location based features (geocoded)
- Time sensitive
- Tiered approach to support different bandwidths

```
<?xml version="1.0"?>
    <addressBook>
      <entry>
            <name>
          <first>Mark</first>
          <last>Whitteker</last>
        </name>
        <address>
          <street1>2817 Pinehurst Drive</street1>
          <street2/>
          <city>Raleigh</city>
          <state>NC</state>
          <zipcode>27604</zipcode>
        </address>
      </entry>
      <entry>
          <first>Jack</first>
          <last>Frost</last>
        </name>
        <address>
          <street1>1 Cold Place
          <street2>Appt. 2B</street2>
          <city>Great Falls</city>
          <state>MT</state>
          <zipcode>59405</zipcode>
        </address>
      </entry>
    </addressBook>
```


Major Maritime Information Categories

- Oceanographic & Meteorological Information
- Vessel Status Information
- Port Infrastructure & Services Information
- Navigation Safety Information
- Ship Safety & Reliability Information
- Recreational Boating Information
- Commercial Fleet, Passenger, Cargo Tracking & Mgmt
- Port & Waterways Planning & Mgmt
- Port Emergency Response Plans

MIML Development



- Form MIML working group (consortium)
 - Promote and encourage participation
 - Organize meetings
 - Coordination and collaboration
- Develop and maintain the documentation

MIML example

Some Links

XML:

- http://www.xml.com
- http://www.xml.org
- http://www.xml.gov
- http://www.w3c.org/xml

P2P:

- http://www.peer-to-peerwg.org
- http://www.exocortex.org/p2p
- http://www.gnutellanews.com/

WIN Benefits

- Distributed nature of the P2P network is robust.
- Potential for rapid implementation.
 - Builds on industry standards.
- Costs of content development and network operation are distributed proportionately amongst various information providers.
- Participants automatically have "buy-in" & incentive to provide information.

Focus Group

Meeting to discuss interagency interest and participation in the development of WIN

Room 250 at 12:30 tomorrowNovember 15.